Sunday, October 21, 2007

ഒരു ഗണിത പ്രശ്നം

X = 0.999... എന്നിരിക്കട്ടെ
അതുകൊണ്ട് 10X = 9.999...


രണ്ടു വശത്തു നിന്നും X കുറച്ചാല്‍...
9X = 9.999... - X

പക്ഷേ X 0.999... ആണ്. അതുകൊണ്ട്
9X = 9.999... - 0.999...
അല്ലെങ്കില്‍ 9X = 9


രണ്ടു വശവും 9 കൊണ്ടു ഹരിച്ചാല്‍
X=1

പക്ഷേ X = 0.999... എന്നാണ് നാം തുടങ്ങിയത്.
അതുകൊണ്ട് 0.999... = 1

നിങ്ങള്‍ എന്തു പറയുന്നു?


© ScienceUncle. All rights resereved.

8 comments:

  1. അവസാനം പറഞ്ഞ കാര്യം ശരിയാണ്. അനന്തം സ്ഥാനങ്ങള് നോക്കിയാല് 0.999... എന്നത് ഒന്നിനു തുല്യമാണ്.

    ReplyDelete
  2. x അനന്തമല്ലെങ്കില്‍ 9.99.. - 0.99.. = 9 അല്ല, 8.99...1 ആണ്, അവിടെയാണ് വ്യത്യാസം.

    ReplyDelete
  3. അഭിപ്രായങ്ങള്‍ പോരട്ടെ...
    - സയന്‍സ് അങ്കിള്‍

    ReplyDelete
  4. മത്തായി & ഉമേഷ്,

    ഉമേഷ് പറഞ്ഞതുപോലെ 0.999..... എന്നത് തീര്‍ത്തും 1 തന്നെയാണ്.

    -സയന്‍സ് അങ്കിള്‍

    ReplyDelete
  5. താങ്കളുടെ ബ്ലോഗ്‌ എനിക്കിഷ്ടപെട്ടു .. ഞാന്‍ ബുക്ക്‌ മാര്‍ക്ക്‌ ചെയ്യുന്നു, ഗണിതത്തിലെ ടിപ്സ് ഇനിയും പ്രധീക്ഷിക്കുന്നു ( ഹയര്‍ കാല്‍കുലസ് ഉണ്ടെങ്കില്‍ ഉപകാരം)

    ReplyDelete
  6. .999 ഒരിക്കലും 1 നു തുല്യമല്ല !

    .999 = 1 ആണെങ്കില്‍ , രണ്ടു ഭാഗവും 10000 കൊണ്ട് ഗുണിച്ചാല്‍
    9990= 10000 എന്നു സമ്മതിക്കേണ്ടി വരും!

    ReplyDelete
  7. സയന്‍സ് അങ്കിള്‍ തന്നെ പറയട്ടെ ഇതിന്റെ കാരണം

    ReplyDelete
  8. ഞാന്‍ ഒരു ഉദാഹരണം പറയാം:
    സംഖ്യ അനന്തമാല്ലെന്നു വിചാരിക്കുക. ഉദാഹരണത്തിന്
    x=0.99
    10x=9.9
    10x-x = 9.90 - 0.99
    9x = 8.91
    x = 0.99
    മൂന്നാമത്തെ step - ഇല്‍ 9.99=0.99 =9 എന്ന് അല്ല എന്ന് പ്രത്യേകം ശ്രദ്ധിക്കുക.
    പക്ഷെ എവിടെ പ്രശ്നം അല്പം സങ്കീര്‍ണമാണ്. 0.9999.... യിലെ അകെ 9 ഉകളുടെ എണ്ണം fixed അല്ല എന്നതാണ് പ്രശ്നം. അനന്തമായി നീണ്ടുപോകുന്ന ഈ ദശാംശ സംഖ്യകില്‍ ഒന്ന് കൂടിയാലോ കുറഞ്ഞാലോ പ്രശനമെയല്ല എന്ന approximation ആണ് ഇവിടെ വില്ലന്‍.

    --
    Be free, feel freedom...
    http://opentechlab.blogspot.com

    ReplyDelete